
Toxicology Reports 8 (2021) 1538–1557

Available online 31 July 2021
2214-7500/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Endocrine disruptors also function as nervous disruptors and can be 
renamed endocrine and nervous disruptors (ENDs) 

Gilles-Eric Seralini *, Gerald Jungers 
University of Caen Normandy, Network on Risks, Quality and Sustainable Development, Faculty of Sciences, Esplanade de la Paix, 14032, Caen, France   

A R T I C L E  I N F O   

Handling Editor: DR. Aristidis Tsatsakis  

Keywords: 
Endocrine disruptors 
Nervous disruptors 
Neurotoxicity 
Cognitive 
Behaviour 
Pollutants 

A B S T R A C T   

Endocrine disruption (ED) and endocrine disruptors (EDs) emerged as scientific concepts in 1995, after numerous 
chemical pollutants were found to be responsible for reproductive dysfunction. The World Health Organization 
established in the United Nations Environment Programme a list of materials, plasticizers, pesticides, and various 
pollutants synthesized from petrochemistry that impact not only reproduction, but also hormonal functions, 
directly or indirectly. Cells communicate via either chemical or electrical signals transmitted within the endo
crine or nervous systems. To investigate whether hormone disruptors may also interfere directly or indirectly 
with the development or functioning of the nervous system through either a neuroendocrine or a more general 
mechanism, we examined the scientific literature to ascertain the effects of EDs on the nervous system, specif
ically in the categories of neurotoxicity, cognition, and behaviour. To date, we demonstrated that all of the 177 
EDs identified internationally by WHO are known to have an impact on the nervous system. Furthermore, the 
precise mechanisms underlying this neurodisruption have also been established. It was previously believed that 
EDs primarily function via the thyroid. However, this study presents substantial evidence that approximately 80 
% of EDs operate via other mechanisms. It thus outlines a novel concept: EDs are also neurodisruptors (NDs) and 
can be collectively termed endocrine and nervous disruptors (ENDs). Most of ENDs are derived from petroleum 
residues, and their various mechanisms of action are similar to those of “spam” in electronic communications 
technologies. Therefore, ENDs can be considered as an instance of spam in a biological context.   

1. Introduction 

Endocrine disruption (ED) or endocrine disruptors (EDs) emerged as 
scientific concepts in 1995 [Colborn [1]; Lindström et al. [2]; Ginsburg 
[3]] after numerous chemical pollutants were found to be responsible 
for reproductive dysfunction. This was first posited three decades prior 
[Carson [4]]. EDs were reviewed more recently in a book [Seralini [5]], 
which advanced the understanding of the molecular bioaccumulation of 
identified xenobiotics, as well as their combined and long-term effects 
on the whole physiology of one or several generations. They have been 
identified in organisms at all levels of the ecosystem and are also 
ubiquitously found in the food chain. 

The World Health Organization established in the United Nations 
Environment Programme [WHO [6]], a list of 176 compounds 
comprising materials, pesticides, and various pollutants (Table 1, col
umns 1–3) impacting not only reproduction, but also hormonal func
tions—directly or indirectly—primarily in mammals, including humans. 

This has enabled numerous countries to establish regulatory policies for 
the production and use of these chemicals or to manage contamination 
in food, air and water. Numerous political debates have been raised 
around regulatory thresholds, based on the effects of ENDs demon
strated on a population or a subpopulation of animals or humans, and 
published at epidemiological and molecular levels. The herbicide 
Roundup has been added as the 177th compound due to its widespread 
usage as a pesticide, combined with the relatively recent demonstration 
of its ED effects [Richard et al. [7]]. 

Epidemiology is not technically adapted to solve the questions on 
combined and long-term effects of molecules or mixtures on mammalian 
or human health [Mesnage et al. [8]]; this becomes further complicated 
when epigenetic and transgenerational impacts are studied [Skinner and 
Anway [9]]. For instance, pesticide accumulation is rarely measured in 
organs after death in order to ascertain whether they can be used as 
markers to correlate their levels with pathologies. Instead, the under
standing of endocrine disruption may be aided by advances in the 
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combined knowledge of biochemical, cellular, organic and environ
mental effects in experimental animal models, farm animals, wildlife 
observations in contaminated areas, and occupational medicine in fac
tories producing the chemicals in question. 

The endocrine system is not limited to the control of sexual repro
duction and development. Endocrine disruptors may affect the thyroid 
as well as the glucocorticoid axis, adrenal and pancreatic systems, adi
pose tissue and immune or neuroendocrine targets [Laessig et al. [10]; 
Masuo and Ishido [11]; Weiss [12]; Leon-Olea et al. [13]]. They even 
possess cognitive effects [Schantz and Widholm [14]], particularly via 
various neuromediator interferences. 

Cells communicate via either chemical or electrical signals that are 
transmitted within the endocrine or nervous systems. Generally, in 
endocrinology, hormones may have a biphasic action dependent on the 
receptors’ availability and concentration, resulting in time-, dose- and 
sex-dependent effects that vary according to the targeted tissue and the 
specific organism. It is thus reductionist to say, for instance, that a 
hormone such as estradiol “stimulates ovulation”, since it can inhibit 
this function when used at pharmacological doses as a pill or during 
embryonic or foetal life. Endocrine disruptors may thus possess the 
potential of exerting similar biphasic ambivalent effects. 

Thus, to determine whether hormonal disruptors may also interfere 
directly or indirectly with neural development [Grandjean and Land
rigan [15]] or functioning even in adults, either through a neuroendo
crine or a more general mechanism, this study examined the scientific 
literature to ascertain the effects of ENDs on the nervous system 
—including neurotoxicity, cognition, and behaviour— of the major 
internationally identified (according to WHO) endocrine disruptors. 

2. Materials and methods 

Each compound was numbered (Nb, Table 1) out of 176 known 
endocrine disruptors [WHO [6]], plus Roundup. Its name was associated 
with the keyword “nervous” or “neurotoxicity” or “cognitive” or 
“behavio(u)r” on the PubMed data bank, and eventually on Google 
Scholar. When the references were too numerous, “or” was excluded in 
order to directly associate the keywords. If more than 20 references were 
found to be published, “review” was added to the keywords and cited. 
Finally, a maximum of five references were indicated, focusing on the 
most recent research in humans or mammals, without excluding other 
models. The mechanisms were documented (Table 1, column 4) as direct 
effects on the neurons or the nervous system, or as indirect effects, 
including thyroid regulation. 

3. Results and discussion 

All of the 176 internationally identified EDs (as per WHO guidelines) 
were studied in the international bibliography published between 1931 
and 2021, in order to assess their effects on the nervous system (Table 1). 
It was observed that every single one of the EDs induced neurodisruption 
or clear neuromodulation, while even stimulation occurred in certain 
rare cases. Thus, 100 % of the EDs studied were known neuro
modulators, either directly or indirectly. Previously, it was generally 
believed that endocrine disruptors with a neuronal impact functioned 
via the thyroid gland, which is classically known to control nervous 
system development. However, this study presents substantive evidence 
that at least 79.1 % of the EDs are, in fact, also NDs through various 
other mechanisms (Table 1). 37 compounds out of the total were 
implicated to possess a thyroid-dependent mechanism. Therefore, the 
emergence of this overarching concept compelled us to propose the 
introduction and use of a collective abbreviation “ENDs” for endocrine 
and nervous disruptors. 

Therapeutic hormones or pharmaceutical products (see column 3 in 
Table 1) that may exist as pollutants in rivers [Arya et al. [16]; Saus
sereau et al. [17]; Goulle et al. [18]] often comprise ENDs—such as 
certain natural phytoestrogens that are more biodegradable than stable 
petrochemistry-based xenobiotics—often resulting in bioaccumulation 
within organisms. Mixtures of chemicals such as Agent Orange or di
oxins have also been cited as ENDs. In addition, formulants of pestici
des—such as POEA (polyoxyethylene tallow amine)—have been 
discovered to be EDs more recently [Gasnier et al. [19]; Defarge et al. 
[20]] and may also possess nervous effects [Malhotra et al. [21]; Sato 
et al. [22]]. In some models, glyphosate alone [Martinez et al. [23]; 
Coullery et al. [24]], known as the declared active ingredient of a major 
pesticide formulation used across the world, has been shown to be less 
toxic or disruptive to the nervous system than its equivalent formulants 
present in Roundup [Mesnage et al. [8]; Aitbali et al. [25]; Gallegos et al. 
[26]]. This also proves to be true for non-glyphosate-based herbicides 
containing non-declared polycyclic aromatic hydrocarbons and heavy 
metals that are individually identified as EDs [Seralini and Jungers 
[27]]. 

The impacts of ENDs on physiological functions and pathologies 
appear to be less specific than expected, especially since they interact 
with several intracellular and intercellular communications simulta
neously. A majority of them are derived from petroleum residues, and 
their mechanisms of action can be likened to those of “spam” in elec
tronic communications technologies. Thus, ENDs can be considered as a 
widespread instance of spam in a biological context. 

Table 1 
Endocrine disruptors (according to WHO, 2013) also function as nervous system disruptors, and may thus be collectively termed as Endocrine and Nervous Disruptors 
(ENDs).  

Nb Endocrine disruptor Class or use Mechanisms of nervous disruption 

1 Acetochlor Herbicide 
Roman [28]: antithyroid agents 
Helbing et al. [29]: thyroid hormone receptor gene expression in the brain 
Zafeiridou et al. [30]: compound action potential of the sciatic nerve 

2 Alachlor Herbicide 

Goldner et al. [31]: hypothyroidism 
Seok et al. [32]: central nervous system symptoms 
Lo et al. [33]: severe neurological and cardiovascular outcomes after acute poisoning 
Doïcheva [34]: higher irritability, lack of coordination and orientation 

3 Amitrole Herbicide 

Sirohi et al. [35]: specific binding to lactoperoxidase 
Chilumuri et al. [36]: inhibit neuroprotection against amyloid peptides 
Pan et al. [37]: reduction of thyroid-stimulating hormone receptors 
Roman [28]: hypothyroxinemia 
Brucker-Davis [38]: thyroid disruption in utero or direct neurotoxicity 

4 Anthracene PAH Palanikumar et al. [39]: neurotoxicity by inhibition of acetylcholinesterase 
Vieira et al. [40]: increase catalase activity and superoxide dismutase, glutathione reductase and peroxidase. 
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Table 1 (continued ) 

Nb Endocrine disruptor Class or use Mechanisms of nervous disruption 

5 Aroclor 1254 PCB mixture 

Mucio-Ramírez et al. [41]: decrease somatodendritic vasopressin release 
Wei et al. [42]: oxidative stress in the brain 
Coburn et al. [43]: Inhibition of vasopressin release from magnocellular neuroendocrine cells 
Majumdar et al. [44]: induces oxidative stress in the brain 
Tilson et al. [45]: increases translocation of protein kinase C and decreases Ca2+-buffering in the brain 

6 Arsenic (As) Heavy metal, pesticide 

Liu et al. [46]: cognitive impairment 
Webb et al. [47]: chronic neurological disease 
Preciados et al. [48]: influence nuclear respiratory factor 1 by genomic and epigenomic networks, this contributes in the 
development of complex chronic human brain disorders 
Karri et al. [49]: pro-oxidant elements dominate antioxidants factors and leads to cognitive dysfunction 
Tyler at al. [50]: alters epigenetics and hippocampal function, glutamatergic, cholinergic and monoaminergic signaling; 
altered adult neurogenesis; and increases Alzheimer’s-associated pathologies 

7 Atrazine Herbicide 

Ma et al. [51]: reduces dopamine levels in the substantia nigra and corpus striatum in the midbrain 
Zhang et al. [52]: severe dopamine neuron degeneration 
Lin et al. [53]: increases in striatal dopamine; decreases in perirhinal cortex serotonin 
Ottinger et al. [54]: impact on arginine vasotocin, catecholamines and gonadotropin releasing hormone. 

8 Benzo(a)anthracene PAH Dayal et al. [55]: most notable symptoms are neurologic 

9 Benzo(a)pyrene PAH 

Slotkin et al. [56]: impairs neurodifferentiation and neurite formation, development of dopamine and acetylcholine 
phenotypes 
Sarma et al. [57]: induces neuronal cell damage involving oxidative stress through mitochondria-mediated apoptosis 
pathway 
Yang et al. [58]: cause disruption of glutamate (Glu) neurotransmitter transmission by decreasing the level of Glu, 
reducing the expression of Glu receptors 
Chepelev et al. [59]: binds to the aryl hydrocarbon receptor, modulate the transcription of glutamate receptor subunits, 
decrease long-term potentiation, learning and memory 
Niu et al. [60]: reduces neurobehavioral function and monoamine, amino acid and choline neurotransmitter levels 

10 BB-153 PBB Jacobson et al. [61]: associations of PBBs and PCBs with thyroid disease and thyroid hormone levels. 
Tilson et al. [62]: chronic exposure produces behavioral or neurological toxicity 

11 Benzyl butyl phthalate Phthalate 

Morgenstern et al. [63]: impairs thyroid function in preschool children 
Min et al. [64]: attenuation of the effects of cAMP Response Element-Binding Protein downstream, oxidative damage 
and impaired behavioral performance 
Betz et al. [65]: changes in amygdala protein s related on synaptic plasticity 
Kasuya M [66]: inhibited the outgrowth of nerve fibers and glial cells from cerebellar explants 

12 BDE-209 PBDE 

Chen et al. [67]: activation of NMDA receptors inhibits the expression of phosphodiesterases, favoring apoptosis 
induction and induces neurotoxicity. 
Li et al. [68]: the mRNA expressions of synaptobrevin 2, syntaxin 1A, SNAP-25, and synaptophysin are significantly 
decreases in the hippocampi of rat exposed to it 
Sun et al. [69]: during rat pregnancy increases hippocampal autophagy, decreases neuron viability 
Vuong et al. [70]: large prospective human cohorts demonstrates that prenatal and postnatal exposure adversely 
impacts externalizing behavior (e.g., hyperactivity and conduct problems) 

13 BDE-47 PBDE 

Zhuang et al. [71]: induces neurotoxicity and cognitive impairment by upregulation of nuclear TAR DNA-binding 
protein 43 in the hippocampus provoking neuronal apoptosis. 
Chen et al. [67]: inhibits axonal growth via ryanodine receptor-dependent mechanisms 
Zhai et al. [72]: prenatal exposure inhibits neurodevelopmental function and behavior with an increase of luteinizing 
hormone levels. 

14 BDE-99 PBDE 

Dach et al. [73]: reduces expression of myelin associated genes like HMBP due to olligodendrocyte reduction. 
Ding et al. [74]: prenatal exposure is associated with lower developmental quotients in young children. 
Roze et al. [75]: transplacental transfer is associated with worse fine manipulative abilities, and worse attention of 
children at school age. 

15 Benzene Aromatic solvent 

Bahadar et al. [76]: exposure can lead to aberration of vital systems in the body like nervous, cardiovascular, and 
respiratory. 
Manto M. [77]: in humans, cerebellum is a main target of environmental toxins such as toluene/benzene derivatives. 
Ritchie et al. [78]: a number of published studies report acute or persisting neurotoxic effects of hydrocarbon fuels. 

16 Benzylidene camphor UV filter 
Ruszkiewicz et al. [79]: potential neurotoxicity 
Faass et al. [80]: reduces proceptive and receptive behaviors and specific gene expression in ventromedial hypothalamic 
nucleus and medial preoptic area. 

17 Bisphenol A Plastics monomer 

Ejaredar et al. [81]: exposure in childhood is associated with higher levels of anxiety, depression, hyperactivity, 
inattention, and conduct problems. 
Zhou et al. [82]: affects neuron numbers in different regions of the hypocampus altering learning and memory ability of 
adolescent mice. 
Inadera H. [83]: in a review, it has detrimental effects on neurological development. 
Masuo et al. [11]: locus ceruleus is enlarged in treated male rats and neurodegenerative disorders. 

18 Bisphenol A diglycid ether Plastics monomer Hutler et al. [84]: the main abnormalities in amphibians larvae related to neurotoxicity. 

19 Bisphenol F Plastics monomer 
Ohtani et al. [85]: exposure alters offspring behavior, resulting in increases in anxiety and depressive state in mice. 
Rosenfeld [86]: induces neurobehavioral disruptions. 
Castro et al. [87]: affects genes in the juvenile female rats prefrontal cortex. 

20 Bisphenol S Plastics monomer 
Wu et al. [88]: triggers oxidative stress in the nervous system in vivo and in vitro in humans. 
Castro et al. [87]: affects genes expression and dopamin serotonin system in the prefrontal cortex of juvenile female rats. 
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Table 1 (continued ) 

Nb Endocrine disruptor Class or use Mechanisms of nervous disruption 

21 Bromacil Herbicide Lombardi et al [89]: exposure through residential proximity to agricultural applications during pregnancy may increase 
the risk of childhood central nervous system tumors. 

22 Butylate Herbicide Lulla et al. [90]: for Ziram: selectively toxic to dopaminergic neurons in vivo, and this toxicity is synuclein-dependent. 

23 Butylated hydroxyanisole 
Antioxidant for long 
preservation of food 
products 

Miyazaki et al. [91]: quinone reductase inducer which significantly and dose dependently blocked 
methamphetamine-induced elevation of quinoprotein, and ameliorated methamphetamine-induced cell death. 
Katsuki et al. [92]: abolishes neurotoxic action of arachidonic acid. 

24 Cadmium (Cd) Heavy metal 

Raciti et al. [93]: affects epigenetics with negative consequences on the development of the nervous system. 
Jacobo-Estrada et al. [94]: induces toxicity in fetus on the central nervous system. 
Zhang et al. [95]: induces autophagy in neurons promoting neurodegenerative disorders. 
Sanders et al [96]: exposure may be associated with poorer cognition. 
Bo et al. [97]: neurotoxic on the long-term. 

25 Carbamazepine Pharmaceutical anti- 
epileptic 

Al-Rubai et al. [98]: reduces neurosphere size and cell migration at high doses. Reduction in glial fibrillary protein and 
tubulin III. 
Hansen et al. [99]: induces encephalopathy with hyperammonemia, intrinsic effects on cerebral receptors. 
Gualtieri et al. [100]: affects tests of memory, psychomotor speed, cognitive flexibility, and attention. 

26 Carbaryl Insecticide 

Lee et al. [101]: inhibits classically acetylcholinesterase in the nervous system; induces cognitive impairments by 
disturbed neurodevelopment. 
Freeborn et al. [102]: affects electroencephalogram by decreasing theta area and delta frequency, increases beta 
frequency. 
Wang et al. [103]: acetylcholinesterase is inhibited by high dose and damages the sciatic nerve. 

27 CB-15 PCB Cocco et al [104]: chronic exposure to PCBs affects the development and function of the nervous system. 
Lovato et al [105]: a mixture of PCB can induce functional deficits and altered behavioral threat in zebrafish. 

28 CB-77 Coplanar PCB 
Ozcan et al. [106]: dioxin-like and non-dioxin-like PCB congeners are equally potent in causing cognitive decrements 
seen in children exposed prenatally to PCBs. 
Howard et al. [107]: binds the aryl hydrocarbon receptors with high affinity. 

29 CB-118 PCB 

Brucker-Davis et al. [108]: negative impact on neurocognitive development, negatively correlated on motor and 
expressive language in children. 
Doi et al. [109]: four-month-olds children with a low-level of prenatal exposure exhibits a preference for the upright 
biological motion, impairs the development functioning and brain development. 

30 CB-126 Planar PCB 
Cauli et al. [110]: impairs motor coordination at 2 months in males but not in female rats, reduces locomotor activity in 
females. 

31 CB-132 PCB 
Uwinana et al. [111]: does not appear to affect dopaminergic cells in cultures or levels of dopamine. To be further 
studied. 

32 CB-138 PCB 

Boix et al. [112]: exposition activates metabotropic glutamate receptors and that increases dopamine in females and 
reduces it in males. The opposite changes are observed for glutamate, in rat nucleus accumbens. 
Campagna et al. [113]: Ca2+ homeostasis and androgen receptor signaling pathways are primarily disrupted in 
cerebellum proteome, contributing toward a premature ageing and neurotoxicity. 
Naert et al. [114]: birds bioaccumulate in brain and the central nervous system. 

33 CB-153 PCB 

Enayah et al. [115]: neurotoxic, and affects dopamine turnover in vitro. 
Cauli et al. [110]: many motor alterations and induces hyperactivity at adulthood in rats. 
Gascon et al. [116]: deleterious effects on neuropsychological development which are mainly attributable to prenatal 
exposure. 

34 CB-169 Planar PCB 
Morse et al. [117]: local hypothyroidism occurs in the brains of fetal and neonatal rats exposed by increase in type II 
thyroxine 5’-deiodinase in the brain. 

35 CB-180 PCB 
Boix et al. [112]: affects motor activity in rats; increased glutamate release in nucleus accumbens following activation of 
metabotropic glutamate receptors would be involved in reduced dopamine release. 
Naert et al. [114]: birds bioaccumulate in brain and the central nervous system. 

36 Chlordane 
Organo-chlorine 
insecticide 

Kilburn [118]: it is suggested that it causes protracted neurotoxicity in patients. 
Kilburn and Thornton. [119]: exposure is associated with protracted impairment of neurophysiological and 
psychological functions. The central nervous system is the most important target. 
Grutsch et al. [120]: the characteristic signs of acute toxicity are hypothermia, hyperexcitability, tremors and 
convulsions. In human, signs of acute toxicity are tremors and convulsions. 

37 Chlordibromo-methane Trihalo-methane 
Villanueva et al. [121]: Minor associations observed between exposure during gestation and child neuropsychological 
development. 
Balster et al. [122]: effect on operant behavior in mice. 

38 Chlorinated Paraffins 
Flame retardants, 
lubricants, plasticizers 

Liu et al. [123]: exposure could alter gene expression in the hypothalamic-pituitary-thyroid axis. 
Mariussen et al. [124]: neurobehavioral effects, indicating adverse effects on the central nervous system: alteration of 
neurotransmitter functions, Ca2+ homeostasis processes, induction of protein kinase C and phospholipase A2 
mobilization, and oxidative stress. 
Eriksson et al. [125]: significant decrease of presynaptically sodium-dependent choline uptake in mice. 

39 Chlorpyrifos Insecticide 

Burke et al. [126]: acute exposure of humans irreversibly inhibit acetylcholinesterase, and chronic exposure induces 
neurological deficits that range from cognitive impairments to tremors in childhood 
Yamada et al. [127]: inhibit neural induction via mitochondrial fusion protein mitofusin 1-mediated mitochondrial 
dysfunction in human stem cells. 
Sogorb et al. [128]: seems able to induce neurodevelopmental alterations in animals 
Lee et al. [101]: affects protein levels in the mice developing brain and induces persistent adult behavior and cognitive 
impairments; neurotoxic effects. 
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Table 1 (continued ) 

Nb Endocrine disruptor Class or use Mechanisms of nervous disruption 

40 Citalopram Antidepressant 

Yeo et al. [129]: disability is improved. 
Gaanderse et al. [130]: induces dyskinesia of the tongue. 
Sprowles et al. [131]: selective serotonin reuptake inhibitor, alters spatial learning and memory, anxiety, depression in 
rats. 

41 Clofentezine 
Pesticide 

Hurley [132]: induces thyroid follicular cell tumors in rodents; disrupts thyroid-pituitary homeostasis. 
Acaracide 

42 Coumaphos Pharmaceutical 
Abdelsalam [133]: inhibition of brain of acetylcholinesterase, inhibition of brain neurotoxic esterase, plus delayed 
neurotoxicity. 
Abou-Donia et al. [134]: degeneration of axons and myelin in the spinal cord. 

43 Coumestrol Phytoestrogen Jantaratnotai et al. [135]: suppression of interferon regulatory factor-1 and phosphorylated STAT1 expression in 
lipopolysaccharide-activated microglia. 

44 D4 Cyclic siloxane 
Material 

Andreou et al. [136]: unusual constriction of the isolated sciatic nerve, death of nerve fibers. 
45 D5 Cyclic siloxane 

Fuzzard et al. [137]: due to silicone implants, myalgias, chronic fatigue, cognitive impairment. 46 D6 Cyclic siloxane 

47 Daidzein 

Isoflavones 
Yu et al. [138]: perinatal exposure enhances estrogen receptor alpha expression in several brain regions such as stria 
terminalis, arcuate hypothalamic nucleus, and central amygdaloid nucleus. 
Zeng et al. [139]: significant effects on locomotor activity, mood and social behavior after long-term consumption. 
Jin et al. [140]: the neurotoxic effect of daidzein could be due to the inhibition of the GABA(A) receptor resulting in 
further enhancement of excitation by glutamate and leading to cellular damage in primary rat neuronal cultures. Phytoestrogen 
Román GC [28]: inhibits thyroperoxidase that catalyzes iodination and thyroid hormone biosynthesis 

48 Dibromochloropropane Pesticides Teitelbaum [141]: the product is central nervous system depressant. 

49 Desethylatrazine 

Herbicide Liu et al. [46]: neuroendocrine disruptor that impacts the expression of neurotoxicity-related genes such as Ache, Gap43, 
Gfap, Syn2a, Shha, Mbp, Elavl3, Nestin and Ngn1 in early developmental stages of zebrafish. 

Metabolite 
Gunderson et al. [142]: Strong positive correlation between CYP19 and SF-1 transcript abundance in exposed tadpoles 
during brain development. 
Hossain et al. [143]: decreases striatal dopamine levels and in synaptosomes in rat. 

50 2,4-D Herbicide agent orange 

Yi et al. [144]: Increases various neurologic diseases; systemic atrophies affecting the nervous system, including spinal 
muscular atrophy, Alzheimer disease, and peripheral polyneuropathies. 
Bortolozzi et al [145]: changes in various neurotransmitter systems, such as serotonin (5-HT) and dopamine (DA), were 
proposed to mediate some of the behavioral effects in rats 
Evangelista de Duffard et al. [146]: Increases sensitivity in dopamine D2-like brain receptor from 2,4-dichlorophe
noxyacetic acid (2,4-D)-exposed and amphetamine challenged rats. 

51 2,4-Dichlorophenol Chlorophenol Krieg [147]: At low concentrations, it may act at acetylcholine and γ-aminobutyric acid synapses in the central nervous 
system to modify neurobehavioral test performance. 

52 3-Diltiazem Pharmaceutical Stevens et al. [148]: Calcium channel blocker. 

53 2,4′-DDD (o,p’-DDD) 
Organo-chlorine Heilmann et al. [149]: Some central nervous disorders were observed. 
Insecticide and 
pharmaceutical mitotane 

Lanser et al. [150]: Neuropsychologic and neurologic side effects. 
Du Rostu et al. [151]: neurological symptoms and neurotoxicity both central and peripheral. 

54 2,4′-DDT (o,p’-DDT) 

Organo-chlorine 
Kajta et al. [152]: depressive-like symptoms after prenatal exposure possibly by DNA hypomethylation and estrogen 
receptor signaling pathway. 
Zhang et al. [153]: effects on glucocorticoid-receptors on the nervous system. 
Eskenazi et al. [154]: Prenatal exposure to DDT, and to a lesser extent DDE, was associated with neurodevelopmental 
delays during early childhood. Insecticide 
Halldin [155]: altered the development of the neural system and resulted in demasculinization of male quail. 
Fry [156]: impaired differentiation of the nervous system through mechanisms of hormonal mimicking of estrogens. 

55 4,4′-DDD (p,p’-DDD) Organo-chlorine Al-Saleh et al. [157]: low parent’s evaluation of developmental status of infants was significantly associated with DDD 
in breast milk. Insecticide 

56 4,4′-DDE (p,p’-DDE) 

Organo-chlorine Wnuk et al. [158]: stimulation of retinoid X receptor α and retinoid X receptor β-mediated intracellular signaling plays 
an important role in the propagation of DDE-induced apoptosis during early stages of neural development. 

Insecticide 

Cartier et al. [159]: p,p’-DDE exposure, both pre- and postnatally, during early childhood is associated with visual 
processing impairment later in life. 
Eskenazi et al. [154]: Prenatal exposure to DDT, and to a lesser extent DDE, was associated with neurodevelopmental 
delays during early childhood. 

57 4,4′-DDT (p,p’-DDT) 

Organo-chlorine 
Kajta et al. [152]: depressive-like symptoms after prenatal exposure possibly by DNA hypomethylation and estrogen 
receptor signaling pathway. 
Zhang et al. [153]: effects on glucocorticoid-receptors on the nervous system. 
Eskenazi et al. [154]: prenatal exposure to DDT, and to a lesser extent DDE, was associated with neurodevelopmental 
delays during early childhood Insecticide 
Parent et al. [160]: DDT is involved in neuroendocrine disruption of the reproductive axis. 

58 Di-(2-ethylhexyl) adipate Plasticizer 
Lee et al. [161]: inappropriate expression of granulin and/or p130 genes in the brains of male and female neonatal rats 
by perinatal exposure may exert permanent effects on the hypothalamus, thereby decreasing sexual behavior after 
maturation. 

59 Dehydroepi-androsterone Natural hormone 

Arbo et al. [162]: neuroactive steroid that modulate neuronal and astroglial function and have neuroprotective effects. 
Woda et al. [163]: synthetized in nervous cells, neuroactive local factor in the central nervous system and the periphery. 
Yu et al. [164]: induced depression-like behavior in polycystic ovary syndrome mice, possibly through down-regulation 
of brain monoamines and/or their metabolites. 
Li et al. [165]: provides robust ischemic neuroprotection but also exerts neurotoxicity when administered during 
ischemia and early reperfusion. 
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60 Dexamethasone Synthetic steroid 

Coplan et al. [166]: glucocorticoid-induced neurotoxicity. 
Yu et al. [164]: protracted disruption of mental functions. 
Lopes et al. [167]: affects the phosphorylation state of glutamate AMPA receptors in the human limbic system. 
Feng et al. [168]: decreased both body and brain weight gain. Tapering and repeated doses increased caspase-3 activity. 
Impaired learning and memory capability at juvenile age. 
Uno et al. [169]: induced degeneration and depletion of the hippocampal pyramidal and dentate granular neurons in the 
brains of primate fetuses. 

61 Dibutyl phthalate Phthalate 

Wójtowicz et al. [158]: Aryl hydrocarbon receptor is involved in dibutyl phthalate induced apoptosis and neurotoxicity, 
while the estrogen receptors and peroxysome proliferator-activated receptor gamma signaling pathways are impaired by 
the phthalate. 
Farzanehfar et al. [170]: could reduce total distance movement, impair memory function an induce anxiety in mice. 
Significant nuclei size reduction and condensation in dentate gyrus cells 
Yan et al. [171]: link between oxidative stress and anxiety-like behavior produced by dibutyl phthalate at high doses. 

62 Dibutyltin Plastics stabilizer 

Chantong et al. [172]: potentiation of oxidative stress and pro-inflammatory cytokine expression in microglia cells 
Tsuji et al. [173]: Dibutyltin is neurotoxic and poly-L-lactides toxicity increases with the increase in tin concentration. 
Jenkins et al. [174]: developmental neurotoxicant; the incidence of apoptotic cell death, was increased in the neocortex 
and hippocampus. 
Kobayashi et al. [175]: synaptic parameters modulations; tributyltin metabolites inhibit various parameters of 
cholinergic activity with a potency ranking of tributyltin> dibutyltin> monobutyltin. 

63 Dicofol 
Organo-chlorine Evangelista de Duffard et al. [146]: has effects on motor, sensory, or cognitive functions. 

Insecticide 
Lessenger et al. [176]: case report, neurological injury, cognitive and emotional difficulties persisted over an 18-mo 
period. 

64 Dieldrin 

Organochlorine 

Cowie et al. [177]: disrupts proteins related to oxidative respiration and mitochondrial stress in the central nervous 
system. 
Schmidt et al. [178]: induced neurotoxicity by impaired mitochondrial bioenergetics and endoplasmic reticulum stress 
in rat dopaminergic cells. 
Babot et al. [179]: Long term exposure reduces gamma-aminobutyric acid type A and N -methyl—aspartate receptor 
function in primary culture of mouse cerebellar granule cells. Insecticide 
Evangelista de Duffard et al. [146]: motor sensory or cognitive function effects. 

65 Diethyl hexyl phthalate Phthalate 

Luu et al. [180]: regulate microRNAs in a sex-specific manner which may interfere with proper hippocampal 
development in males and preserve hippocampal development in females. 
Preciados et al. [48]: induced brain health deficits by NRF1 regulated gene networks. 
Park et al. [181]:sex-dependent effect on anxiety proneness in childhood. 
Quinnies et al. [182]: transgenerational modifications in the expression of several pituitary hormones involved in the 
hypothalamic-pituitary-adrenal axis and in stress hormones. 

66 Mono-2-ethyl-hexyl 
phthalate 

DEHP Hydrolysis 
product 

Huang et al. [183]: prenatal exposure was associated with decreased cognitive development in the young children. 
Téllez-Rojo et al. [184]: prenatal exposure creates sex specific neurodevelopmental effects. 

67 Mono-n-butyl phthalate DBP Hydrolysis product 

Doherty et al. [185]: prenatal associations between urinary phtalates in aged mothers and brain performances in young 
children. 
Mao et al. [186]: induce spatial cognitive deficits through altering the expression of apoptosis-related protein. 
Won et al. [187]: increased exposure exhibited supralinear associations with social, thought and attention problems in 
children. 

68 Diethylstilbestrol Synthetic estrogen 

Tomihara et al. [188]: developmental deficits may stem from both in utero toxicity and aberrant maternal care. 
Frye et al. [189]: effects on the aryl hydrocarbon receptor, the peroxisome proliferator-activated receptor and the 
retinoid X receptor, signal transduction pathways, and on calcium influx and/or neurotransmitter receptors. 
Sato et al. [190]: marked influence on synaptogenesis and neuronal vulnerability through mechanisms other than 
through estrogen receptors. 

69 Diisononyl phthalate Plasticizer 
Ma et al. [191]: cause cognitive deficits and anxiety. 
Peng L [192]: oral exposure of mice induced brain damage, and oxidative stress, inflammation, and apoptosis. 
Boberg et al. [193]: behavioral effects, spatial learning effects in perinatally exposed rats. 

70 Diphenhydramine Antihistamine 
Kim et al. [194]: Inhibitory effects on proton currents in microglial cells. 
Mansfeild et al. [195]:reduced attention and increased self-reported drowsiness. 
Wilken et al. [196]: caused significant decrements in vigilance and cognitive functioning. 

71 
Dimethyl-benz(a) 
anthracene PAH Vaswani et al. [197]: alterations of opioid neuropeptides such as beta endorphin, meth-enkephalin and dynorphin levels 

72 Endosulfan (alpha/beta) 

Organo-chlorine 
Jang et al. [198]:induced acute neurotoxicity via induction of oxidative stress and pro-inflammatory responses. 
Caudle WM [199]: can alter the normal development and potential function of neurotransmission in the frontal cortex 

Insecticide 
Silva et al. [200]: neurotoxicity and developmental effects in the zebrafish. 
Silva et al. [201]:effects on brain biogenic amine levels Developmental reproductive toxicity or endocrine disruption 
occurs only at doses causing neurotoxicity. 

73 Endrin 
Organo-chlorine Bagchi et al. [202]: induced lipid peroxidation and DNA damage in brain and regional distribution of catalase activity in 

rat brain. 

Insecticide Gray et al. [203]: alteration of central nervous system function in rats and hamsters even though endrin produces gross 
morphological defects only in hamsters. 

74 Estradiol Natural hormone 

Li et al. [204]: anxiety disorders, augmentation of vulnerability factors associated with anxiety disorder development; 
and facilitation of the maintenance of anxious symptoms post-development. 
Preciados et al. [48]: influences NRF1 regulated gene networks in the development of complex human brain diseases. 
Perez-Alvarez et al. [205]: neuroprotective role after ischemic injury. 
Rossetti et al. [206]: neurosteroid bind specific receptors to promote essential brain functions. 
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75 Estrone Natural hormone 

Mahmoud et al. [207]: may influence adult hippocampal neurogenesis, with a focus on cognitive function and mood 
regulation. 
Grimm et al. [208]: may act upon neuronal bioenergetics in a delicate balance with an age-related effect that might be 
involved in mitochondrial dysfunction underlying neurodegenerative disorders. 

76 Ethinylestradiol Synthetic hormone 

Porseryd et al. [209]: alteration in expression of genes involved in synaptogenesis and synaptic function. In female 
brains, produced significant effects on pathways connected to the circadian rhythm, cytoskeleton and motor proteins and 
synaptic proteins. In male brains effects on pathways related to cholesterol biosynthesis and synaptic proteins. 
Preciados et al. [48]: influences NRF1 signaling pathways, and epigenomic multiple networks. 
Zaccaroni et al. [210]: very low doses during development can affect key behavioral traits that are modulated by 
anxiety. 

77 Ethylene thiourea Herbicide 
Wang et al. [211]: induced abnormal innervation patterns in the anorectum of fetal rats 
Debbarh et al. [212]: neurotoxic in utero, increases sensitivity to genetic and environmental risk factors for cell death 
and apoptosis. 

78 Ethylparaben 
Antifungal 

Merola et al. [213]: provoked behavioral changes including trembling of head, pectoral fins and spinal cord of zebrafish. Preservative 

79 Fadrozole Pharmaceutical 

Lynch et al. [214]: displayed significant fear generalization in rats. 
Alward et al. [215]: this aromatase inhibitor reduced the motivation to sing as well as song acoustic stereotypy. 
Xing et al. [216]:dopamine neuron degeneration and aromatase activity inhibition could be respectively achieved in 
vivo with treatments with the product in female goldfish. 
Langlois et al. [217]: induced female- and male-biased sexual development on Silurana tropicalis brain mRNA levels, 
and reduced brain aromatase activity in frogs. 

80 Fenbuconazole Fungicide Hurley et al. [132]: disrupts thyroid hormone excretion. 

81 Fenitrothion 

Organophosphate Geraldi et al. [218]: affected the acquisition and, mainly, the retention of instrumental conditioning in rats. 
Groszek et al. [219]: High concentration of the pesticides was found in adipose tissue and also in the brain. Respiratory 
failure was the syndrome; and inhibition of acetylcholinesterase activity persisted even for 30 days from poisoning. Insecticide 
Ram et al. [220]: Neurobehavioral changes in freshwater fish exposed 

82 Fenoxycarb Insecticide 
Lenkic et al. [221]: allatostatin may be one of the effectors in the brain by which the pesticides inhibits juvenile 
hormone biosynthesis.in cockroach. 

83 Finasteride Pharmaceutical 

Fertig et al. [222]: permanent sexual dysfunction and mood changes (fatigue, anxiety, depression and suicidal ideation) 
during treatment with this 5-alpha-reductase inhibitor. 
Traish et al. [223]: Also non-sexual adverse effects such as diabetes, psychosis, depression, and cognitive function. 
Ganzer et al. [224]: sexual libido, ejaculatory disorders, disorders of the penis and testes, cognitive symptoms, and 
psychological symptoms 

84 Fipronil Insecticide 

Godinho et al. [225]: toxic interactions with the central nervous system of mammals and lead to memory impairment by 
modulating the GABAergic system. 
Park et al. [181]: Progressive loss of nigrostriatal dopaminergic neurons induced by inflammatory responses to the 
pesticide. 
Magalhães et al. [226]: acts on maternal aggressive behavior through GABA(A) receptors. 
Simon-Delso et al. [227]: disrupting neural transmission in the central nervous system of invertebrates, inhibits 
neuronal receptors. 
Marrs et al. [228]: 4-Aminobutyric acid (GABA) and glycine are inhibitory neurotransmitters and their antagonist, 
fipronil, is excitatory. 

85 Fluoxetine Pharmaceutical 

Golub et al. [229]: provoked greater dendritic spine synapse density in prefrontal cortex of monkeys. 
Hong et al. [230]: induced predominant sympatho-excitation and depressed parasympathetic activity leading to mild 
hypertension, tachycardia, and impairment of baroreflex function. 
Sprowles et al. [131]: Differential effects of perinatal exposure to antidepressants on learning and memory, acoustic 
startle, anxiety, and open-field activity in rats. 

86 Flutamide Pharmaceutical 

Yamada et al. [127]: the effects of postnatal treatment on brain masculinization were observed by analysis of male 
sexual behavior. 
Svensson [231]: induced anxiolytic-like behavior in castrated rats 
Zhang et al. [232]: Effects of neonatal treatment on hippocampal neurogenesis and synaptogenesis correlate with 
depression-like behaviors in preadolescent male rats. 
Ahmadiani et al. [233]: Anticonvulsant effects on seizures involvement of benzodiazepine receptors. 

87 Fonofos Organo-phosphate GK Sidhu, [234]: known to inhibit acetylcholinesterase activity, not only in insect, but in aquatic and terrestrial 
organisms leading to nervous abnormalities among others. Insecticide 

88 Formaldehyde Solvent 

Liu et al. (2018) [235]: Acute formaldehyde exposure induced early Alzheimer-like changes in mouse brain. Provoked 
the permeability of the blood-brain barrier, activation of astrocyte and microglia, oxidative stress and inflammation. 
Li et al. [236]: effects on anxiety, depression-like behavior and cognition ability which may be associated with 
alterations in hippocampal glucocorticoid receptors and brain tyrosine hydroxylase levels. 
Zendehdel et al. [237]: Its neurotoxic effect depend on acetylcholinesterase activity; provoked cholinergic signal 
reduction in cases of cognitive dysfunction. 
Tulpule et al. [238]: contribute to the impaired cognitive performance and neurodegeneration in diseases. 
Songur et al. [239]: neurotoxic characteristics; neurological diseases. 

89 Furan Solvent Johnston et al [240]: exhibits a peculiar mode of attack on the central nervous system 

90 Galaxolide Synthetic musk Ayuk-Takem et al. [241]: neurotoxicity may be associated with the inhibition of cellular; polyisoprenylated methylated 
protein methyl esterase activity; significant risk to individuals predisposed to developing degenerative disorders. 
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91 Genistein 

Isoflavone 

Patisaul HB [242]: involve action at nuclear estrogen receptors, effects on vasopressin, innervation of the lateral septum 
and other brain regions. 
Luo et al. [243]: pretreatment significantly increased cell viability and protein kinase C activity, decreased the levels of 
intracellular calcium, and blocked caspase-3 activity in induced cells. 
Román GC [28]: Transient in utero hypothyroxinemia is related to maternal flavonoid ingestion during pregnancy and 
may provoke autism. 

Phyto-estrogen Lee et al. [244]: mimic the actions and functions of estrogens on brain, two putative pathways; an estrogen 
receptor-mediated pathway and via the inhibition of tyrosine kinase. 
Lephart et al. [245]: The specific influence of dietary soy phytoestrogens is identified on consumptive, learning and 
memory, and anxiety-related behaviors. 

92 
Hexabromocyclodo- 
decane Flame retardant 

Pham-Lake et al. [246]: Impairment in the mesohippocampal dopamine circuit following exposure. 
Wang et al. [247]: main metabolic pathways perturbed, nervous system damage, and developmental disorders. 
Maurice et al. [248]: Short-term effects of a perinatal exposure in rats provoked impairments of early locomotor activity 
and sensory development. 
Al Mousa et al. [249]: inhibiting reticulum Ca(2+)ATPase in human neuroblastoma cells and induced cells death 
possibly causing neurological disorders. 
Lilienthal et al. [250]: Effects on dopamine-dependent behavior and brainstem auditory evoked potentials in rats. 

93 Hexachlorobenzene 

Chlorinated Fu et al. [251]: exhibits through its metabolite a neurotoxic effect by inducing oxidative stress-mediated inflammatory 
responses. 

aromatic 

Kyriklaki et al. [252]: High exposure during pregnancy reduction in working memory score and reduced cognitive 
development at preschool age. 
Reed et al. [253]: exposure involved systemic impairment, as well as on nervous system. 
Li et al. [254]: can induce enhanced lipid peroxidation on rats, and the oxidative stress plays an important role in the 
mechanism of neurotoxicity. 
Goldey et al. [255]: behavioral teratogen, and suggests that human fetuses and suckling infants may be at risk because of 
the neurotoxic effects of the chemical. 

94 Heptachlor 

Organo-chlorine 

Nyffeler et al. [256]: neural crest cell migration was inhibited by this toxicant disturbing a key neurodevelopmental 
process. 
Christen et al. [257]: Strong and dose- dependent inhibition of neurite outgrowth was induced developmental 
neurotoxicity. 
Hong et al. [258]: induced nigral dopaminergic neuronal loss and Parkinsonism-like movement deficits in mice. 

Insecticide Moser et al. [259]: perinatal exposure produced neurochemical and persistent neurobehavioral changes, including 
alterations in spatial learning and memory. 

95 Heptachlor epoxide Organo-chlorinei Kirby et al. [260]: toxic effects of heptachlor epoxide may be responsible for loss of maximal dopamine uptake 
Insecticide Metabolite Yamaguchi et al. [261]: effects on calcium mediated transmitter release from brain synaptosomes of rats. 

96 Hexachlorobutadiene Solvent Badaeva et al. [262,263]: neurotoxic effects in the postnatal period of ontogeny in the rats. 
Murzakaev [264]: small doses affected central nervous activity. 

97 
Heptachloro- 
dibenzodioxin Dioxin 

Chen et al. [265]: synaptic plasticity and neuro-immune system may be two principal affected areas. 
Kimura et al. [266]: over-activation of aryl hydrocarbon receptor following perinatal dioxin exposure, perturbs 
neuronal migration and morphological development in mammalian cortex, supporting previous observations of 
impaired dendritic structure, cortical dysgenesis, and behavioral abnormalities 

98 HPTE 
Methoxychlor 

Not specifically studied (see Methoxyclor): Metabolite 

99 Iodine (I) 
Halogen; Essential 
element Román [28]: Iodine deficiency as a cause of autism. 

100 Kepone 
Organo-chlorine 

Evangelista de Duffard et al. [146]: effects on motor, sensory, or cognitive function; developmental neurotoxicant. 
Mactutus et al. [267]: Neonatal exposure impairs early learning and retention of active avoidance in the rat. 

Insecticide Mactutus et al. [268]: neurotoxic profile of tremor. 
Mactutus et al. [269]: effect on the development of behavioral and/or neural function. 

101 Lead Heavy metal 

Andrade et al. [270]: can induce dyshomeostasis, potentially triggering neurodegenerative disorders, such as 
Alzheimer’s disease and Parkinson’s disease Additionally, changes in heme synthesis have been associated with 
neurodegeneration. 
Chen et al. [271]: exposure in the early stages of neurodevelopment results in long-lasting alterations that ultimately 
cognitive function and behavior. The prime targets of lead toxicity are the multipotent neural stem cells 
Assi et al. [272]: wide spectrum of toxic effects, a real threat to the public health, including on the central nervous 
system 
Karri et al. [49]: lead to imbalance between the pro-oxidant elements and the antioxidants, and induced cognitive 
dysfunction. 
Caito et al. [273]: The central nervous system is particularly vulnerable. The brain accumulates metals. 

102 Levonorgestrel Synthetic Estrogen 

Aleknaviciute et al. [274]: induces a centrally-mediated sensitization of both autonomic and 
hypothalamic-pituitary-adrenal (HPA) axis. 
Simone et al. [275]: in combination with ethinyl estradiol reduced brain-derived neurotrophic factor mRNA in the 
hippocampus resulting in a decline in learning and memory. 
Porcu et al. [276]: Long-term administration decreased allopregnanolone levels and altered GABA(A) receptor subunit 
expression and anxiety-like behavior. 

103 Lindane 
Organo-chlorine 

Costa [277]: block the chloride channels of the GABA-A receptor. 
Mariussen et al. [124]: has neurotoxic potentials after both acute and chronic exposure. 

Insecticide Evangelista de Duffard et al. [146]: has effects on motor, sensory, or cognitive function modifying behavior. 
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104 Linuron Herbicide 

Quintaneiro et al. [278]: adverse effects on neurotransmission and energy production, and interference with 
hypothalamic-pituitary-thyroid and -adrenal-axis. 
Lichtensteiger et al. [279]: in antiandrogenic mixtures impacted genes encoding for components of excitatory 
glutamatergic synapses and genes controlling migration and pathfinding of glutamatergic and GABAergic neurons, as 
well as genes linked with increased risk of autism spectrum disorders. 
Schinn et al. [280]: in mixture inhibited swimming activity of juvenile rainbow trout. 

105 Malathion 

Organophosphate 
Richendrfer & Creton [281]: cause abnormalities in behavior and brain size during development, zebrafish larvae had 
significantly smaller forebrain and hindbrain regions. 
Salama et al. [282]: affect proliferation, differentiation and viability of cultured neurospheres, 
Hashjin et al. [283]: induced chronic toxicity and anxiety-like behavior in the male adult mouse. 

Insecticide 

Rastogi et al. [284]: In mixture provoked neurologic self-reported symptoms, headache, watering in eyes, and burning 
sensation in eye/face, cholinergic symptoms, such as insomnia, headache, muscle cramps, weakness, and anorexia, in 
children. High frequency of neurologic symptoms may be due to parasympathetic hyperactivity. 
Valvassori et al. [285]: affects the central nervous system by inhibiting acetylcholinesterase, leading to an increase of 
acetylcholine in the synaptic cleft, and subsequent activation of cholinergic muscarinic and nicotinic receptors, and 
impairs aversive-memory retention but not non-associative memory, without affecting anxiety-related behaviors. 

106 Mancozeb herbicide 

de Joode et al. [286]: poorer verbal learning outcomes in children, may affect their neurodevelopment. 
Brody et al. [287]: behavioral dysfunction, notably serotonin-mediated egg-laying behavior in Caenorhabditis elegans. 
Li et al. [288]: potentiation on KCNQ2 potassium channels might be the possible mechanism of this product toxicity in 
the nervous system. 
Domico et al. [289]: acute exposure to high doses produces equipotent toxic effects in both dopamine and GABA 
neurons. 
Kimura et al. [290]: nerve conduction velocities and postural sway seem to be sensitive indicators of the effects on the 
central and peripheral nervous system. 

107 Manganese Heavy metal 

Lucchini et al. [291]: essential metal that plays a fundamental role for brain development and functioning. 
Environmental exposure may lead to accumulation in the basal ganglia and development of Parkinson-like disorders. 
Peres et al. [292]: Various neurotransmitter systems may be impaired, especially dopaminergic, but also cholinergic and 
GABAergic. 
Tarale et al. [293]: epigenetic mechanism in product-induced neurotoxicity, development of Parkinson’s disease. 
Zhang et al. [293]: overexposure amplified the role of autophagy in the mechanisms of common neurodegenerative 
disorders. 

108 Methylsulfonyl-DDE DDE Metabolite 
Wnuk et al. [158]: apoptotic action during early stages of neural development with crucial involvement of retinoid X 
receptors. 
Torres-Sanchez et al. [294]: prenatal exposure impaired early child neurodevelopment. 

109 Methoxychlor 

Organo-chlorine Zhang et al. [153]: showed remarkable GR antagonistic properties, disruption of glucocorticoid-responsive genes. 
Martini et al. [295]: perinatal exposure has an organizational effect on hippocampus-dependent memory and emotional 
behaviors. Insecticide 
Schuh et al. [296]: inhibited brain mitochondrial respiration and increases hydrogen peroxide production and CREB 
phosphorylation. 

110 Methyl bromide Fumigant, Pesticide 

De Souza et al. [297]: acute and chronic progressive neurologic injury: seizures, myoclonus, ataxia or cerebral oedema, 
defective neurotransmitter function and abnormal oxidative phosphorylation. 
Kim & Kang [298]: chronic toxic encephalopathy. 
Yang et al. [299]: Sub chronically and chronically, principal target PAHsite appears to be the central nervous system. 
Anger et al. [300]: produce slight neurotoxic effects in fumigation, reduced performance on all cognitive tests. 

111 Methyl farnesoate Juvenile Hormone 
Moshitzky et al. [301]: neural inhibition from the brain (drosophila) act before farnesoic acid, a precursor of the 
product. 
Prestwich et al. [302]: is secreted by the mandibular organs of crustaceans, role partially known. 

112 Methyl triclosan Triclosan metabolite 
Product 

DeLeo et al. [303]: Effect on thyroid hormone action and stress in frog and mammalian culture systems. 

113 Methylbenzylidene 
camphor 

UV filter 

Ruszkiewicz et al. [79]: potential neurotoxicity 
Broniowska et al. [304]: affected the viability of nerve cells, most likely by enhancing the process of apoptosis. 
Li et al. [305]: reduction of neuronal and muscular development in zebrafish embryos 
Faass et al. [80]: effect on female sexual behavior and gene expression in sexually dimorphic brain regions after pre- and 
postnatal exposure in rats. 
Maerkel et al. [306]:Sex- and region-specific alterations of progesterone receptor mRNA levels and estrogen sensitivity 
in rat brain 

114 Methylcholanthrene PAH Singh et al. [307]: induces neurotoxicity in developing neurons derived from human stem cells by activation of aryl 
hydrocarbon receptor. 

115 Mirex 
Organo-chlorine Puertas et al. [308]: showed a decrease in working memory in children. The deficit found in intellectual function during 

early childhood suggests that prenatal exposure may have a significant impact on school performance. 

Insecticide 
Shankland [309]: enhanced the release of neurotransmitters. Direct evidence is available on cholinergic and 
glutaminergic junctions, but other kinds of junctions may be affected. 

116 Monosodium glutamate Food Additive 

Foran et al. [310]: Auditory hindbrain atrophy and anomalous calcium binding protein expression after neonatal 
exposure. 
Sadek et al. [311]: induced neurotoxicity by cholinergic dysfunction, Bcl-2/Bax balance, and antioxidant enzymes gene 
transcripts in rats 
Sasaki-Hamada et al. [312]: Changes in hippocampal synaptic functions and protein expression in obese mice. 
Lau et al. [313]: glutamate excitotoxicity has also been linked to chronic neurodegenerative disorders such as 
amyotrophic lateral sclerosis; evidence for the product excitotoxicity in acute neurologic diseases 
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117 n-Butylbenzene 
Chemical Synthesis Chalansonnet et al. [314]: a decrease in the concentrations of free malondialdehyde in brain structures was observed 

after acute administration of this product. Intermediate 

118 Nicotine Alkald 

England et al. [315]: exposure during pregnancy and adolescence may contribute to cognitive and behavioral deficits in 
later life. Exposure during adolescence is associated with deficits in working memory, attention, and auditory processing, 
as well as increased impulsivity and anxiety. 
Ferrea et al. [316]: Neuroprotective and neurotoxic effects, modifications of cholinergic transmission. 
Ciani et al. [317]: neurotoxicity on rat habenulo-interpeduncular cholinergic neurons. 

119 Nonachlor Organochlorine Lee et al. [318]: chronic exposure to low doses linked to the risk of developing cognitive impairment in elderly. 
Insecticide Kim et al. [319]: key role in the development of hypertension-related cognitive impairment. 

120 Nonylphenol Formulant 

Litwa et al. [320]: RXRα, PXR and CAR xenobiotic receptors mediate the apoptotic and neurotoxic actions of the product 
in mouse hippocampal cells. 
Tabassum et al. [321]: potential risk of cognitive, neurochemical and histopathological perturbations; induced toxicity 
in frontal cortex and hippocampus of rat brain. 
Jie et al. [322]: inhibited neuronal development and differentiation as indicated by the reduction of the neurotrophic 
factor GAP-43. 
Couderc et al. [323]: perinatal exposure induced behavioral and neuro-developmental impairments. 

121 Norfluoxetine Pharmaceutical 

Pinna et al. [324]: selective brain steroidogenic stimulant, reduced post-traumatic stress disorder -like behavior in mice 
Pinna et al. [325]: facilitated GABA(A) receptor neurotransmission and effectively ameliorate emotional and anxiety 
disorders and depression. 
Matsumoto et al. [326]: non-serotonergic mechanism of action in mood and anxiety disorders. 
Pinna et al. [327]: stereo specifically and selectively increase brain neurosteroid content. 

122 Octachlorodibenzo- p- 
dioxin 

Dioxin Tawara et al [328]: fetal growth may be influenced by maternal total exposure to dioxins 

123 Octachlorostyrene 
Chlorinated Chu et al. [329]: 90-day toxicity in the rat: effects on thyroid. 
Aromatic Chu et al. [330]: long-term toxicity in the rat: effects on thyroid. 

124 Octyl-methoxycinnamate UV filter 
Ruszkiewicz et al. [79]: neurotoxic effect of active ingredients in sunscreen products. 
Axelstad et al. [331]: effects on auditory and neurological development of rat offspring. 

125 Octylphenol Formulant 

Bianco et al. [332]: greater accumulation in the cerebral cortex, more accumulation in the cerebellum compared to the 
mesencephalus and thalamus, with consequences to neural behaviour. 
Ghisari et al. [333]: negative impact on fetal brain development, resulting in cognitive dysfunctions. 
Shikimi et al. [334]: promote Purkinje dendritic growth during neonatal life, may be mediated by estrogen receptor in 
the Purkinje cell. 

126 Oxychlordane 
Chloridane Kim et al. [335]: role of background exposure in the development of dementia should be explored 

Kim et al. [336]: greater cognitive decline with aging among elders with high serum concentrations Metabolite 
Jain [337]: total serum thyroxine levels had an inverse association with the product. 

127 Parathion 
Organo-phosphate Slotkin et al. [56]: produced a net increase in norepinephrine emerged over the course of development in brain region. 

Liu et al. [338]: effects on endocannabinoid and endocannabinoid-like lipid metabolites in rat striatum. 
Beard et al. [339]: positively associated with depression in. male private pesticide applicators in the agricultural health 
study. Insecticide 

128 Pendimethalin Herbicide 

Lerro et al. [340]: long-term exposure may alter thyroid function among male pesticide applicators. 
Campillo et al. [341]: Biomarkers indicative of neurotoxicity and physiological stress in caged clams exposed to a 
contaminated water containing the product. 
Pan et al. [342]: thyroglobulin decreased in rats thyroid cells after exposure. 

129 Pentachlorobenzene Chlorinated Den Besten et al. [343]: severe effects on rats thyroid. 
Aromatic 

130 Pentachloro-nitrobenzene Herbicide Hurley PM [132]: disrupted thyroid-pituitary homeostasis 

131 Pentachlorophenol Herbicide, fungicide 

Cheng et al. [344]: affected the timing and coordination of development in the central nervous system. 
Krieg [147]: may act at acetylcholine and γ-aminobutyric acid synapses in the central nervous system. 
Roze et al. [75]: worse coordination, less sensory integrity, worse attention, and worse visuomotor integration. 
Jorens etal. [345]: increased risk for nasal carcinoma 

132 Perchlorate Oxidizer 
Steinmaus et al. [346]: affected thyroid hormone production during pregnancy and fetal neurodevelopment. 
Brent GA [347]: exposure in pregnancy impacted cognitive outcomes in children 
Gilbert et al. [348]: developmental exposure altered synaptic transmission in hippocampus of the adult rat. 

133 Permethrin Insecticide 

Hossain et al. [349]: may directly activate microglial cells and may contribute to neurodegeneration. 
Nasuti et al. [350]: decreased levels of dopamine in the striatum, loss of dopaminergic neurons in the substantia nigra 
pars compacta and cognitive impairments. Motor coordination defects appeared at adult age after early life exposure. 
Zakirova et al. [351]: persistent neuroinflammation, neurobehavioral and neuropathological cognitive impairment in 
mouse. 
Yang et al. [352]: significant effects on the central nervous system. 

134 Perfluorodecane sulfonic 
acid 

Perfluoroalkyl substance Ren et al. (2016) [353]: Binding interactions with thyroid hormone transport proteins and potential toxicological 
implications. 

135 
Perfluorohexane sulfonic 
acid Perfluoroalkyl substance 

Oulhote et al. [354]: High serum concentrations at ages 5- and 7-years, but not prenatally, were associated with 
parent-reported behavioral problems at age 7. 
Ren et al. [353]: Binding interactions with thyroid hormone transport proteins and potential neurotoxicological 
implications. 
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Table 1 (continued ) 

Nb Endocrine disruptor Class or use Mechanisms of nervous disruption 

136 Perfluorononanoic acid Perfluoroalkyl substance 

Jantzen et al. [355]: males exposed showed a reduction in total distance traveled and time of immobility, and an 
increase in thigmotaxis behavior, aggressive attacks, and preference for the bright. Acute, embryonic exposure resulted 
in significant biochemical and behavioral changes in young adult zebrafish. 
Lien et al. [356]: prenatal exposure was found to associate with neurobehavioral symptoms related to attention deficit 
hyperactivity disorder among Asian seven-year-old children. 
Oulhote et al. [354]: sex-dimorphic associations between concentrations and strengths and difficulties. 

137 Perfluorooctanoic acid Perfluoroalkyl substance 

Jantzen et al. [355]: embryonic exposure resulted in significant biochemical and behavioral changes in young adult 
zebrafish. 
Oulhote et al. [354]: significant associations were found in regard to hyperactivity, peer relationship, and conduct 
problems, as well as internalizing and externalizing problems and autism. 

138 Perfluorooctane sulfonate Perfluoroalkyl substance 

Ge et al. [357]: could significantly reduce the cell viability and mediate cell apoptosis in HAPI microglia cells of rat. 
Jantzen et al. [355]: embryonic exposure resulted in significant biochemical and behavioral changes in young adult 
zebrafish. 
Oulhote et al. [354]: significant associations were found in regard to hyperactivity, peer relationship, and conduct 
problems, as well as internalizing and externalizing problems and autism. 

139 
Perfluorooctanesulfonyl 
fluoride 

Perfluoroalkyl substance 
Ren et al. [353]: Binding interactions with thyroid hormone transport proteins and potential neurotoxicological 
implications. 

140 Phorate 
Organo-phosphate Starks et al. [358]: associated with better verbal learning and memory 

Vandana et al. [359]: obvious effect on cholinesterase enzyme profile of olfactory bulb of mice after systemic 
administration of low doses for long terms. 

Insecticide 

141 Picloram Herbicide Reddy et al. [360]: decreased neuronal branching and degenerating neurons, probably through a mitochondrial 
pathway. 

142 Polyvinylchloride Polymer; PVC 

Meshchakova et al. [361]: provoked functional disorders risk connected with cardiovascular and nervous diseases. 
Podoll et al. [362]: acute intoxication resulted in vertigo, nausea and headache up to a narcotic effect. In patients with 
chronic occupational exposure, neurological disturbances included sensory-motor polyneuropathy, trigeminal sensory 
neuropathy, slight pyramidal signs and cerebellar and extrapyramidal motor disorders. Psychiatric disturbances present 
as neurasthenic or depressive syndromes. Sleep disorders and disorders of sexual functions are frequently encountered. 

143 8-Prenylnaringenin Prenylflavonoid 
Urmann et al. [363]: neurodifferentiating potential of the product. 
Bagatin et al. [364]: panicolytic effects in rats with generalized anxiety and panic disorders. 
Oberbauer et al. [365]: promote neuronal differentiation and neurite outgrowth and are neuroprotective. 

144 Procloraz Fungicide 
Vinggaard et al. [366]: agonizes the aryl hydrocarbon receptor and inhibits aromatase activity. 
Ghisari et al. [333]: inhibitory effect on rat pituitary cell growth increasing the risk or a negative impact on fetal brain 
development, resulting in cognitive dysfunctions. 

145 Procymidone Fungicide Xiang et al. [367]: potential to disrupt thyroid homeostasis, agonistic effects. 

146 Prodiamine Herbicide Radio et al [368]: selectively increased neurite outgrowth. 

147 Propylthiouracil Thyroid inhibitor 

Gilbert et al. [369]: an impaired capacity for hippocampal neurogenesis may contribute to impairments in synaptic 
plasticity and cognitive deficits 
Koromilas et al. [370]: inhibition of hypothalamic, pontine and cerebellar NaK-ATPase; a major marker of neuronal 
excitability and metabolic energy production as well as a regulator of important systems of neurotransmission. 
Koromilas et al. [371]: impairs neurochemical mechanisms that could be involved in the way clinical hypothyroidism 
could affect optimal neurodevelopment and, ultimately, cognitive function. 
Vanek et al. [372]: induced central nervous system vasculitis presenting as confusion. 

148 Pyrene 
Polycyclic Aromatic 
Hydrocarbon 

Yang et al. [58]: Benzo[a]Pyrene (BaP) exposure caused the disruption of glutamate (Glu) neurotransmitter 
transmission by decreasing the level of Glu, reducing the expression of Glu receptors, enhancing the level of SNAP-25, 
and neurotoxicity. 
Chepelev et al. [59]: BaP correlates with impaired learning and memory in adults, and poor neurodevelopment in 
children. Neurotoxic endpoints and DNA damages are more sensitive than cancer endpoints. 
Chen et al. [373]: behavioral impairments resulting from postnatal BaP exposure are potentially long-lasting in rats. 
Wormley et al. [374]: neurobehavioral deficits; gestational exposure to BaP and dioxin reduced specific indices of 
learning and memory, including hippocampal-based synaptic plasticity mechanisms. 
Takeda et al. [375]: the fetal exposure of mice to diesel exhaust affected the emotional behaviors associated with the 
serotonergic and dopaminergic systems in the brain 

149 Pyrimethanil Fungicide Hurley PM [132]: disrupt thyroid-pituitary homeostasis only 

150 Pyriproxyfen Juvenile hormone analog Truong et al. [376]: induced craniofacial defects in zebrafish, and adverse behavioral effects. 
Fourrier et al. [377]: changes in social integration, acceptance by nestmates and social behaviors performance in bees. 

151 Resorcinol 
Disinfectant, Chemical 
intermediate 

Motonaga et al. [378]: inhibit thyroid peroxidase to cause developmental toxicity and neurotoxicity. 
Román [28]: transient maternal hypothyroxinemia resulting from dietary and/or environmental exposure to this 
antithyroid agent. 

152 Roundup 
Main herbicide 
worldwide 

Defarge et al. [20]: its formulants decrease aromatase activity below toxic levels. 
Gress et al. [379]: the product altered locomotor activity in rats. 
Modesto et al [380]: it inhibits acetylcholinesterase in fish brain. 

153 Sertraline Psychotropic 
Lee et al. [381]: the product is used for trauma-focused psychotherapies 
Frölich et al. [382]: selective serotonin reuptake inhibitor, which has demonstrated efficacy on neuropsychiatric 
behavioral symptoms in general. 
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Table 1 (continued ) 

Nb Endocrine disruptor Class or use Mechanisms of nervous disruption 

154 
Short chain chlorinated 
paraffins 

Flame retardant; 
plasticizer 

Liu et al. [123]: exposure could alter gene expression in the hypothalamic-pituitary-thyroid axis and thyroid hormone 
levels. 
Wyatt et al. [383]: potent peroxisome proliferators; high dose shows a depressed plasma thyroxine level, with increase 
in thyroid stimulating hormone 

155 2,4,5-T (in Agent Orange) Herbicide 

Gunderson and Daroff [384]: epilepsy and later on all effects of brain injury and post-traumatic stress disorders. 
St Omer et al. [385]: together with 2.4D, increased significantly the concentration of norepinephrine in whole 
developing brain and increased dopamine. 
Yi et al. [144]: increased the prevalence of endocrine disorders, especially in the thyroid and pituitary gland; and 
increased various neurologic diseases. 

156 Tamoxifen Pharmaceutical 

Denk et al. [386]: granular neurons of the olfactory bulb and dentate gyrus, vascular cells and ependymal cells 
throughout the brain, and peripheral sensory neurons are modified by this treatment. 
Boele et al. [387]: Cognitive domains that rely on verbal abilities (verbal memory and fluency) seem to be at risk for 
deterioration after treatment. 

157 
Tetrabromo- 
bisphenol A Flame retardant 

Park et al. [388]: induced the loss of both zebrafish neuromasts and hair cells in the rat cochlea in a dose-dependent 
manner. 
Chen et al. [389]: induced apoptotic cell death, delayed cranial motor neuron development, inhibited primary motor 
neuron development and loosed muscle fiber during the early development in zebra fish. 
Jarema et al. [390]: may have developmental or pharmacological effects on the vertebrate nervous system. 
Wojtowicz et al. [391]: decreased the expression of PPAR-γ protein in neocortical neurons; and the mechanism of action 
also induced apoptotic and neurotoxic effects. v 

158 testosterone Natural hormone 

Holmes et al. [392]: testosterone increased the expression of COX2 and apoptosis in dopamine neurons, increased 
incidence of Parkinson’s disease in men compared with women. 
Cunningham et al. [393]: induces dopaminergic neurotoxicity via caspase-3-dependent activation of protein kinase 
C-delta. 

159 Tetrachloro-dibenzofuran Chlorinated dioxin 
Xu et al. [394]: this dioxin-like compound suppresses acetylcholinesterase activity via transcriptional downregulations 
in vitro. 

160 
Tetrachloro-dibenzo-p- 
dioxin Chlorinated dioxin 

Pelclova et al. [395]: neurological and neurophysiological findings in workers with chronic intoxication 50 years after 
exposure. 
Xu et al. [394]: this dioxin suppresses acetylcholinesterase activity via transcriptional downregulations in vitro. 
Sánchez-Martín et al. [396]: aryl hydrocarbon receptor-dependent induction of apoptosis by the product in cerebellar 
granule cells from mouse. 

161 PCB methyl sulfones PCB metabolite Kato et al. [397]: reduction of thyroid hormone levels by different mechanisms. 

162 Tetraiodothyronine Natural hormone * 

Chen et al. [398]: inhibition of UDP-glucuronosyltransferases. 
Dos Reis-Lunardelli et al. [399]: can alter animal behavior and learning and memory in rats. 
Zamoner et al. [400]: reorganizes the cytoskeleton of glial cells through Gfap phosphorylation and Rhoa-dependent 
mechanisms. 

163 Thiazopyr Herbicide Hurley PM [132]: disrupts thyroid-pituitary homeostasis only. 

164 Toxaphene 
Organo-chlorine 

Calciu et al. [401]: congeners products showed a strong inhibitory effect on the otic system development. 
Waritz et al. [402]: increases the occurrence of two thyroid tumors and increased excretion of thyroid hormones. 

Insecticide 
Kodavanti et al. [403]: inhibits calmodulin activated adenylate cyclase in rat brain. 
Brunström. [404]: affected the growth of the chicks and had neurotoxic effects. 

165 2,4,6-Tribromophenol BFR, Natural product 

Leonetti et al. [405]: accumulate in the placenta and potentially alter thyroid hormone function in a sex-specific 
manner. 
Lee et al. [406]: thyroid gland activity decreased, disrupted homeostasis and interfered with thyroid hormone system. 
Lyubimov et al. [407]: developmental neurotoxicity and immunotoxicity in rats. 

166 Trenbolone Anabolic steroid Quinn et al. [408]: disrupted development of either the central nervous system or the hypothalamic-pituitary-gonadal 
axis. 

167 Tributyltin Fungicide 

Ishihara et al. [409]: induces oxidative neuronal injury. 
Frye et al. [189]: effects through the aryl hydrocarbon receptor, the peroxisome proliferator-activated receptor and the 
retinoid X receptor, signal transduction pathways, calcium influx and/or neurotransmitter receptor. 
Kotake [410]: neurotoxic, induces behavioral abnormalities and toxic to the developing central nervous system through 
AMPA receptor subunit. 

168 Trichloroethylene Chlorinated solvent 

Yeung [411]: neurotoxicity inducing anxiety in man. 
Da Broi et al. [412]: produces pleasant inebriating effects with rapid dissipation, followed by central nervous system 
depression, coma. 
Kang et al. [413]: provokes chronic central nervous system disorders and peripheral neuropathy. 
Chiu WA et al. [414]: carcinogenic to humans by all routes of exposure and toxic to the central nervous system. 
Bale et al. [415]: interacts directly with several different classes of neuronal receptors by generally inhibiting excitatory 
ions receptors/channels and potentiating the function of inhibitory receptors/channels. 

169 Trichlorophenol Fungicide Xu et al [416]: urinary levels increased risk of attention deficit hyperactivity disorder among school-aged children. 

170 Triclocarban Antibacterial agent 

Dong et al. [417]: altered expression of proteins involved in nervous system development. 
Barros et al. [418]: modified chronically female amphipod Gammarus behavior. 
Wu et al. [419]: inhibited iodide uptake, but had differential effects on the expression of thyroid hormone 
synthesis-related genes and the activity of thyroid peroxidase. 
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Dawley štakora izazvane trovanjem endosulfanom, Arhiv za higijenu rada i 
toksikologiju 67 (1) (2016) 9–17. 

G.-E. Seralini and G. Jungers                                                                                                                                                                                                                 



Toxicology Reports 8 (2021) 1538–1557

1554

[199] W.M. Caudle, Vulnerability of synapses in the frontal cortex of mice 
developmentally exposed to an insecticide: potential contribution to 
neuropsychiatric disease, Neurotransmitter (Houston, Tex.) 2 (1) (2015). 

[200] M. Silva, et al., A comparison of ToxCast test results with in vivo and other in 
vitro endpoints for neuro, endocrine, and developmental toxicities: a case study 
using endosulfan and methidathion, Birth Defects Res. Part B: Dev. Rep. Toxicol. 
104 (2) (2015) 71–89. 

[201] M.H. Silva, D. Gammon, An assessment of the developmental, reproductive, and 
neurotoxicity of endosulfan, Birth Defects Res. Part B: Dev. Rep. Toxicol. 86 (1) 
(2009) 1–28. 

[202] M. Bagchi, et al., Protective effects of lazaroid U74389F (16-desmethyl tirilazad) 
on endrin-induced lipid peroxidation and DNA damage in brain and liver and 
regional distribution of catalase activity in rat brain, Free Radical Biol. Med. 19 
(6) (1995) 867–872. 

[203] L.E. Gray Jr, et al., Perinatal toxicity of endrin in rodents. III. Alterations of 
behavioral ontogeny, Toxicology 21 (3) (1981) 187–202. 

[204] S.H. Li, B.M. Graham, Why are women so vulnerable to anxiety, trauma-related 
and stress-related disorders? The potential role of sex hormones, The Lancet 
Psychiatry 4 (1) (2017) 73–82. 

[205] M. Perez-Alvarez, F. Wandosell, Stroke and neuroinflamation: role of sexual 
hormones, Current Pharm. Design 22 (10) (2016) 1334–1349. 

[206] M.F. Rossetti, et al., Oestrogens and progestagens: synthesis and action in the 
brain, J. Neuroendocrinol. 28 (7) (2016). 

[207] R. Mahmoud, S.R. Wainwright, L.A. Galea, Sex hormones and adult hippocampal 
neurogenesis: regulation, implications, and potential mechanisms, Frontiers in 
Neuroendocrinol. 41 (2016) 129–152. 

[208] A. Grimm, et al., Improvement of neuronal bioenergetics by neurosteroids: 
implications for age-related neurodegenerative disorders, Biochimica et 
Biophysica Acta (BBA)-Mol. Basis of Dis. 1842 (12) (2014) 2427–2438. 

[209] T. Porseryd, et al., Persistent effects of developmental exposure to 17α- 
ethinylestradiol on the zebrafish (Danio rerio) brain transcriptome and behavior, 
Frontiers in Behav. Neurosci. 11 (2017) 69. 

[210] M. Zaccaroni, et al., Developmental exposure to very low levels of ethynilestradiol 
affects anxiety in a novelty place preference test of juvenile rats, Neurotoxicity 
Res. 30 (4) (2016) 553–562. 

[211] W. Wang, et al., Abnormal innervation patterns in the anorectum of ETU-induced 
fetal rats with anorectal malformations, Neurosci. Lett. 495 (2) (2011) 88–92. 

[212] I. Debbarh, et al., Human neurotoxicity of ethylene-bis-dithiocarbamates (EBDC), 
Revue neurologique 158 (12 Pt 1) (2002) 1175–1180. 

[213] C. Merola, et al., Toxicological assessment and developmental abnormalities 
induced by butylparaben and ethylparaben exposure in zebrafish early-life stages, 
Environ. Toxicol. Pharmacol. 80 (2020) 103504. 

[214] J.F. Lynch I.I.I., et al., Aromatized testosterone attenuates contextual 
generalization of fear in male rats, Hormones and Behav. 84 (2016) 127–135. 

[215] B.A. Alward, et al., Aromatase inhibition rapidly affects in a reversible manner 
distinct features of birdsong, Sci. Rep. 6 (1) (2016) 1–9. 

[216] L. Xing, M.J. Venables, V.L. Trudeau, Role of aromatase and radial glial cells in 
neurotoxin-induced dopamine neuron degeneration and regeneration, General 
and Comp. Endocrinol. 241 (2017) 69–79. 

[217] V.S. Langlois, P. Duarte-Guterman, V.L. Trudeau, Expression profiles of 
reproduction-and thyroid hormone-related transcripts in the brains of chemically- 
induced intersex frogs, Sexual Dev. 5 (1) (2011) 26–32. 
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